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Abstract The building blocks of several block ciphers involve arithmetic
operations, bitwise operations and non-linear functions given as SBoxes.
In the context of implementations secure against Side Channel Analysis,
these operations shall not leak information on secret data. To this end,
masking is a widely used protection technique. Propagating the masks
through non-linear functions is a necessary task to achieve a sound and
secure masked implementation. This paper describes an efficient method
to securely access N SBoxes when the N inputs are encoded as a single
word arithmetically masked. This problematic arises for instance in a
secure implementation of the standard block ciphers GOST or SEED. A
method using state of the art algorithms would be to first perform an
arithmetic to boolean mask conversion before independently accessing
the N SBoxes. Compared to this method, the algorithm proposed in this
paper needs less code, less random generation and no extra memory. This
makes our algorithm particularly suitable for very constrained devices.
As a proof of concept, we compare an implementation in 8051 assembly
language of our algorithm to the existing solutions.

Keywords: Side Channel Analysis, Differential Power Analysis, Block
Cipher, SBox, Arithmetic Masking, Boolean Masking, Mask Conversion

1 Introduction

During the execution of a cryptographic algorithm, power consumption, execu-
tion timings, or electro-magnetic radiation may give information on secret data.
The techniques using these leakages to attack cryptographic primitives are called
Side Channel Analysis (SCA). Different techniques appeared in the literature.
Among them, Differential Power Analysis (DPA) [13,5,15] turns out to be a pow-
erful tool to attack implementations [3,1,18]. To recover a small part k of a secret,
DPA consists in recording the power consumption – the leakage – of d moments
where a sensitive variable (i.e. a value depending on k and the input) is involved,
for a large number of different inputs. Then, an attacker makes predictions on
a combination of these leakages for all possible hypotheses on k according to
a well-chosen leakage model. Finally, the attacker outputs the hypothesis k̂ for
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which the prediction and the actual leakages are the most “similar”. This de-
gree of similarity is usually measured using statistical tools such as the Pearson
correlation coefficient [5]. The number d of moments denotes the order of the
DPA.

In parallel, countermeasures were soon developed to secure implementations
against DPA. In this specific context, a countermeasure aims at preventing all
sensitive data from leaking information, or more precisely making their leakages
independent of the secret. A commonly used countermeasure is to mask – or split
– a sensitive variable with one (resp. d) random value(s) [11,6]. This is called
first order masking (resp. d-th order masking). With this countermeasure, as the
random masks change at each execution, the leakage of the masked variable is
statistically independent of the secret. Only the combined leakages of the masked
variable and all the masks could reveal some information. Thus, a d+ 1-th order
DPA is necessary to attack a d-th order masked implementation.

Sensitive data shall then remain masked through every step of a crypto-
graphic algorithm. The critical task is to adapt the algorithm to keep this state,
especially for non-linear parts. In block ciphers, the use of highly non-linear
functions (w.r.t. bitwise addition) is mandatory to prevent classical cryptanal-
ysis. One way to represent such functions is to use a so-called SBox. SBoxes
have been used to design many symmetric encryption schemes such as the DES
or the AES. Several masking schemes have been developed for these functions
to prevent DPA of the first order [11,2,4,9] or higher order [22,21,20]. In gen-
eral, for block ciphers built upon SBoxes and linear layers, a masking scheme
based on boolean masking is chosen and an adapted secure SBox access [16,19]
is implemented.

Some algorithms also use modular addition as a non-linear function. The
block cipher IDEA [14] is an example. For this kind of algorithm, boolean mask-
ing is not always suitable. Indeed, a boolean mask propagates easily through
linear functions, but with modular addition, arithmetic masking is preferred.
To switch from one masking to another, a mask conversion is required. Several
methods have been proposed [10,7,17,8], and an application to IDEA is suggested
for instance in [17].

Finally, both modular addition and SBoxes may be used together as in the
Korean standard block cipher SEED [23], or in the Russian standard block ci-
pher GOST 28147-89 [24]. In these algorithms, multiple small SBoxes are used
simultaneously to compute the image of a larger input. More precisely, arithmetic
operations are performed on the large input before accessing these SBoxes. It is a
natural requirement to protect such algorithms against DPA. This paper focuses
on protecting this kind of block ciphers against first order DPA. More specifi-
cally, given N SBoxes (` bits→ `′ bits), we need to securely access these SBoxes
when the N inputs are encoded as a single word of n = N ` bits, arithmetically
masked – addition modulo 2n – with a random n-bit mask. Though, protecting
an implementation usually comes with a cost, either in memory or in perfor-
mances. Often, devices that are more likely to suffer Side Channel Analysis are
also very constrained in terms of memory (smart-cards, embedded devices, . . . ).
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A method has been proposed in [12] and applied to the SEED algorithm. The
method is highly efficient but uses a non-negligible amount of RAM. It is then
interesting to have an alternative solution requiring lower memory resources.

Contributions. In this paper, we study the protection of block ciphers mixing
arithmetic operations, boolean operations and multiple SBoxes against first or-
der DPA. More specifically, we focus on the secure access to multiple SBoxes
when arithmetic masking is used. We propose a novel algorithm to perform this
operation. Compared to existing methods, our algorithm needs less memory, less
code and less random generation.

Organization of the Paper. This paper is organized as follows. In Sect. 2, we
give some notations and review existing algorithms to securely access one SBox.
We also give some useful background on masking conversion. In Sect. 3, we
present in detail the main concern of this paper, namely the problem of accessing
simultaneously N SBoxes with an arithmetically masked input. In this section
we also propose a first solution using state of the art techniques. In Sect. 4, we
present our new algorithm as well as a careful security analysis. We compare an
implementation of both solutions in Sect. 5. Section 6 concludes this article.

2 Background and Related Work

This paper deals with two kinds of masking:

– Boolean masking: a sensitive variable a ∈ IFn2 is masked with a random value
m ∈ IFn2 by computing ã = a⊕m, where ⊕ denotes bitwise exclusive or.

– Arithmetic masking: a sensitive variable a ∈ IFn2 is masked with a random
value m ∈ IFn2 by computing ã = a �m, where � denotes addition modulo
2n.

When the masking operation is not precised, we may use operators ? and � to
denote either ⊕ or �. The unmasking operation for ? is denoted by ?−1. For
instance if ? is �, then ?−1 is �. If ? is ⊕, then ?−1 is also ⊕.

Sometimes, a value a ∈ IFn2 is viewed as N chunks of ` bits where n = N `.
The notation ai, 0 6 i < N , is used to denote the i-th chunk where a0 is
the least significant chunk. Then, we use the notation a = aN−1‖ . . . ‖a0. If a
modular operation is performed on a small chunk, the operator is sub-scripted
by the corresponding bit-size. For instance, we write �` to denote the addition
modulo 2`. If the operation is done on n bits, the subscript is omitted to ease
reading.

2.1 Substitution Boxes

A non-linear function f : IFn2 → IFp2 is often described as an SBox. An SBox is a
table which gives for an n-bit index a the corresponding p-bit output f(a). If S is
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an SBox, we use the notation S[a] to denote the image of a by the corresponding
function f .

In a secure implementation context, it is necessary that a masked input ã
remains masked during the SBox access. Moreover, the output of the SBox shall
also be masked, possibly with a different mask. The input masking is denoted
by the operation ? and the output masking is denoted by the operation �.

In [16], Messerges proposes to recompute a table corresponding to a masked
version of the SBox, that is, to compute an SBox T such that T [a?m] = S[a]�m′.
This method has been chosen in [2] to secure the DES and AES SBoxes. The
method is efficient but requires a large amount of memory (p · 2n bits). In a
context where memory is a limited resource, this method could be a bottleneck
if n is too large. In [19], the authors proposed an alternative method, more
suitable to such environment. The method does not require extra memory space.
We describe it in Alg. 1.

Algorithm 1 Secure SBox implementation [19]

Inputs: S : IFn2 → IFp2, ã = (a ? m) ∈ IFn2 , m ∈ IFn2 , m′ ∈ IFp2,
? : (IFn2 × IFn2 )→ IFn2 , � : (IFp2 × IFp2)→ IFp2

Output: b̃ = S[a] �m′
1: function SecureSBox(S, ã,m,m′, ?, �)
2: for k = 0 to 2n − 1 do

3: cmp← (k
?
= m) . if k and m are equal, cmp is 1, else 0

4: t← ã ?−1 k . unmask ã with the loop index
5: Rcmp ← S[t] �m′
6: end for
7: return R1

8: end function

Using Alg. 1, the real unmasking operation is dissimulated among 2n − 1
other dummy unmasking. Note that the masking type may be the same for both
the input and the output. In the rest of the paper, this method is preferred to
the table re-computation as we focus on implementation on memory-constrained
devices.

Remark 1. Contrary to this paper, the method proposed in [12] is built upon
the table re-computation algorithm of [16].

2.2 Masking Conversion

A sensitive variable has to remain masked throughout the cryptographic algo-
rithm. A boolean (resp. arithmetic) masking propagates easily through boolean
(resp. arithmetic) operations. When a specific algorithm mixes boolean opera-
tions (rotations, bitwise and/or, . . . ) and arithmetic operations (modular addi-
tion/subtraction), mask conversion is needed. An efficient method to perform
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boolean to arithmetic masking conversion (BMtoAM) has been proposed by
Goubin in [10]. It uses a constant number of operations with respect to the bit-
size of the data. The converse operation (AMtoBM) is more costly to achieve.
A first method has also been proposed in [10] but it requires a number of op-
erations linear in the bit-size. Later, Coron and Tchulkine introduced in [7] a
more efficient method which pre-computes a conversion table for “small” input
and output masks r and s (say λ bits over n), and processes the input by λ-bit
chunks. It appears that the method fails for some inputs because of a problem
in the carry propagation between the chunks [8]. In 2004, Neiße and Pulkus
proposed a sound and efficient method to perform AMtoBM conversion in [17].
Their method is similar to [7], as it also uses a conversion table for a smaller
λ-bit mask, but they handle the carries in a different way. A pre-computation
step first generates two uniformly distributed λ-bit masks r and s. Then, two
tables T and C are initialized. For every possible λ-bit inputs k (0 6 k < 2λ) the
value (k �λ r)⊕ s is stored in T [k]. The carry resulting from (k �λ r) is stored
in C[k]. The whole process is described in Alg. 2.

Algorithm 2 Secure AMtoBM implementation [17]: pre-computation

1: procedure AMtoBMPrecomp( )
2: r ← Random({0, . . . , 2λ})
3: s← Random({0, . . . , 2λ})
4: for k = 0 to 2λ − 1 do
5: T [k]← (k �λ r)⊕ s . subtraction may generate a carry
6: C[k]← carry(step 5)
7: end for
8: end procedure

To convert the masking without leaking information, the authors use the
following useful property. For any u, v ∈ IFλ2 , it holds that

¬(u�λ v) = ¬u�λ ¬v �λ 1 ,

where ¬x denotes the bitwise complement of x. Let (−1) be the value 2λ−1 (all
λ bits are set to 1). Then, for any z ∈ {0, 1}, it holds that

(u�λ v)⊕ (−z) = (u⊕ (−z))�λ (v ⊕ (−z))�λ z . (1)

If the bit z is chosen uniformly at random for each execution, it can be used
to mask the propagating carries. Indeed, whenever u �λ v generates a carry,
¬u�λ ¬v �λ 1 does not, and conversely. The pre-computed tables T and C can
then be used to convert and propagate the carry by λ-bit chunks. This is the
purpose of the conversion algorithm from [17] described in Alg. 3.

Remark 2. The authors of [17] also propose several optimizations to their algo-
rithm such as storing C[k] in place of the least significant bit (LSB) of T [k] after
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Algorithm 3 Secure AMtoBM implementation [17]: conversion

Inputs: ã = (a�m) ∈ IFn2 , m ∈ IFn2 , m′ ∈ IFn2
Output: b̃ = a⊕m′
1: function AMtoBM(ã,m,m′)
2: AMtoBMPrecomp( ) . only if not already done
3: z ← Random({0, 1})
4: f ← ã⊕ (−z) . complement (or not) the input
5: g ← (m⊕ (−z))� (r‖ . . . ‖r) . change mask to r‖ . . . ‖r
6: h← ((s‖ . . . ‖s)⊕ (−z))⊕m′ . change mask from s‖ . . . ‖s
7: c← z
8: for i = 0 to N − 1 do
9: f ← f � gi � c

10: b̃i ← T [f0]⊕ hi
11: c← C[f0]
12: f ← f � λ
13: end for
14: return b̃ = b̃N−1‖ . . . ‖b̃0
15: end function

remarking that if the LSB of r and s are the same, the LSB of k and T [k] are
also the same (for 0 6 k < 2λ). Then this bit does not need to be stored when
s is chosen accordingly, for instance when s = r.

Recently, Debraize proposed an alternative method in [8]. The method is sim-
ilar to [17], but the carry is protected by computing two sets of tables T (0), C(0)

and T (1), C(1). These tables can be described using table T and C of Alg. 2 by:

T (ρ)[i] = T [i] , T (ρ⊕1)[i] = T [i�λ 1] ,

C(ρ)[i] = C[i]⊕ ρ , C(ρ⊕1)[i] = C[i�λ 1]⊕ ρ ,

where ρ is a bit randomly chosen at each execution. Whether to access T (0)

or T (1) is decided according to the value of the input carry masked by ρ. The
output carry is masked again by ρ. This way, the input and output carries are
always blinded. Compared to Alg. 3, the resulting algorithm would require twice
the amount of memory. To suit our low-memory requirements, in the rest of this
paper Alg. 3 is preferred.

3 Multiple SBoxes

As described in Sect. 1, in some algorithms, several “small” SBoxes are used
simultaneously to compute a non-linear function on a “big” input. Let `,N ∈ IN
and let n = N `. Let a ∈ IFn2 be an SBox input. It can be written as a =
aN−1‖ . . . ‖a0, where ai are elements of IF`2, for 0 6 i < N . Consider N SBoxes

S0, . . . , SN−1 which map ` bits to `′ bits (IF`2 → IF`
′

2 ). We define S to be the
“SBox” mapping n bits to N `′ bits such that

S[a] = SN−1[aN−1]‖ . . . ‖S0[a0] .
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For instance, the DES has N = 8 SBoxes with ` = 6 and `′ = 4. For the sake of
clarity, in what follows, we assume that ` = `′. Nevertheless, the results below
can be extended to the case ` 6= `′.

Boolean Masking. When the input a of multiple SBoxes is masked with boolean
masking, the application of Alg. 1 to each small SBox is straightforward because
each part mi of a boolean mask m is a boolean mask for the corresponding part
ai of an input a:

ã = a⊕m = aN−1 ⊕mN−1‖ . . . ‖a0 ⊕m0 .

One may then securely compute S[a] using table re-computation or using Alg. 1
by computing

SecureSBox
(
SN−1, ãN−1,mN−1,m

′
N−1,⊕,⊕

)
‖ . . .

. . . ‖SecureSBox (S0, ã0,m0,m
′
0,⊕,⊕) , (2)

where the m′i’s are `-bit parts of an output mask m′. This method is the one
used in [2] to secure the DES SBoxes with table re-computation. However, an
issue appears when the input is arithmetically masked.

3.1 Multiple SBoxes on Arithmetically Masked Input

In some algorithms, it can be necessary that the input of multiple SBoxes is
masked with an arithmetic mask. In Fig. 1, we give as an example the round
function of a typical block cipher. At round t, the current sub-key key(t) is added
to the state v(t) to constitute the N `-bit input a. The output b of the N = 4
SBoxes is then rotated to produce the next state v(t+1).

v(t)

key(t)

� Rot v(t+1)
a b

S0

S1

S2

S3

a0

a1

a2

a3

b0

b1

b2

b3

Figure 1. A block cipher round using an arithmetic operation and multiple SBoxes

This kind of round function is used for instance in SEED where N = 4 and
` = 8, or in GOST 28147-89 where N = 8 and ` = 4. In both cases, the input a
and the output b are 32-bit words.

To protect such a round against DPA, v(t), v(t+1) as well as the intermediate
values a and b should be masked. In this example, v(t) should be preferably
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masked with modular addition to allow the mask to propagate through the
operation v(t)�key(t). As for b, it should be masked with a boolean mask which
easily propagates through the rotation. In these conditions, a simple solution as
in the boolean case cannot be achieved.

When the input a is arithmetically masked with a mask m, the following
property holds:

ã = a�m = (aN−1 �` mN−1 �` cN−1) ‖ . . . ‖ (a0 �` m0 �` c0) , (3)

where c0 = 0 and for all i, 1 6 i < N ,

ci =

{
1 if (ai−1 +mi−1 + ci−1) > 2`

0 otherwise
.

The value ci corresponds to the carry propagating through the modular addition
�. Because of this carry, the direct application of (2) is not possible. We have
then to address the following problem.

Problem 1. Given an arithmetically masked n-bit input ã = a�m, and N `-bit
SBoxes S = (S0, . . . , SN−1) such that n = N ` as defined above, we want to

securely compute b̃ = b �m′ such that b = S[a], where m and m′ are uniformly
distributed n-bit masks, and � is either � or ⊕.

Assume that an algorithm called SecureMulSBox solves Prob. 1 with � =
⊕, a secure implementation of the round function of Fig. 1 would be achieved in
Fig. 2. Our goal is then to find an implementation of SecureMulSBox.

(v(t) �m)

key(t)

� Rot (v(t+1) ⊕m′)
ã b̃

SecureMulSBox

Figure 2. A masked block cipher round using an arithmetic operation and a secure
implementation of multiple SBoxes

3.2 A Solution Using Mask Conversion

We have seen that accessing N SBoxes when boolean masking is used can be
done independently. Then, an answer to Prob. 1 could be to first perform an
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Algorithm 4 Secure multiple SBox with AMtoBM implementation

Inputs: S = (S0, . . . , SN−1) ∈ (IF`2 → IF`2)N , ã = (a�m) ∈ IFn2 , m ∈ IFn2 , m′ ∈ IFn2
Output: b̃ = S[a]⊕m′ = (SN−1[aN−1]⊕m′N−1)‖ . . . ‖(S0[a0]⊕m′0)
1: function SecureMulSBox(S, ã,m,m′)
2: t̃← AMtoBM(ã,m,m) . keep m as output mask
3: for i = 0 to N − 1 do
4: b̃i ← SecureSBox(Si, t̃i,mi,m

′
i,⊕,⊕)

5: end for
6: return b̃ = b̃N−1‖ . . . ‖b̃0
7: end function

AMtoBM conversion and then apply N times Alg. 1 on each small SBox. This
process is described in Alg. 4.

The output of Alg. 4 is masked with boolean masking. To obtain an arith-
metic masking instead, a BMtoAM conversion could be added at the end. As
mentioned in Sect. 2.2, the conversion in this direction is not very costly. In
particular, it does not require extra memory. Thus, in the rest of this paper, we
focus on solving Prob. 1 with � = ⊕.

Algorithm 4 needs to pre-compute 2λ elements in a table (to use AMtoBM
from [17]). A large value of λ ensures a faster conversion time, but to fit our
low memory requirements, λ would have to be quite small. This implies a more
expensive conversion. In the next section, we discuss a new solution which inte-
grates the conversion within the secure SBoxes computation.

4 Secure Multiple SBoxes with Arithmetic Masking

4.1 Algorithm

As pointed out in Sect. 2.2, the propagation of the carry coming from the arith-
metic masking is an issue. In the solution of Prob. 1 presented in Alg. 4, it is
carried out by the masking conversion algorithm. If one could turn an arithmetic
mask m on n = N ` bits into N arithmetic masks on ` bits for a given masked
input, then, similarly to (2), one could compute

SecureSBox
(
SN−1, ãN−1,mN−1,m

′
N−1,�`,⊕

)
‖ . . .

. . . ‖SecureSBox (S0, ã0,m0,m
′
0,�`,⊕) . (4)

We describe in Alg. 5 a naive, though non-secure algorithm to “remove carries”
from an arithmetic mask.

Algorithm 5 is insecure against DPA as it manipulates the sensitive variable
a (more precisely, parts ai of the sensitive variable) unmasked. This is done at
step 4 when the i-th input block ãi is unmasked to compute the carry for the i `-
th bit. However if we use (4), in the algorithm SecureSBox presented in Alg. 1
a loop for every possible masks is performed to securely access the i-th SBox.
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Algorithm 5 Non-secure removing of carries

Inputs: ã = (a�m) ∈ IFn2 , m ∈ IFn2
Output: b̃ = (aN−1 �` mN−1)‖ . . . ‖(a0 �` m0)
1: function RemoveCarries(ã,m)
2: c = 0 . C propagates the carries
3: for i = 0 to N − 1 do
4: t← ãi �` mi �` c
5: c← carry(step 4) . save next carry
6: bi ← t�` mi

7: end for
8: return b̃ = b̃N−1‖ . . . ‖b̃0
9: end function

The idea is to use this loop to dissimulate not only the unmasking operation,
but also the next carry computation.

Still, each output carry has to be masked. This may be performed using a
bit z as in the mask conversion algorithm from [17] described in Alg. 3. Indeed,
consider (3) when masked by a random bit z. It holds then that

ã⊕ (−z) = (a�m)⊕ (−z)
= (aN−1 �` mN−1 �` cN−1)⊕ (−z)‖ . . . ‖ (a0 �` m0 �` c0)⊕ (−z) .

For each i, 0 6 i < N , let azi = ai ⊕ (−z) and mz
i = mi ⊕ (−z). Let czi =

ci ⊕ (−z) = ci ⊕ z, the i-th carry masked by the bit z. Then, according to (1),
we obtain that

ã⊕ (−z) =
(
azN−1 �` m

z
N−1 �` c

z
N−1

)
‖ . . . ‖ (az0 �` m

z
0 �` c

z
0) . (5)

Equation (5) together with Alg. 5 are used to derive the main algorithm of this
paper presented in Alg. 6.

To prove the correctness of Alg. 6, we study the internal variables when
i = 0. It can be noticed that only when k is equal to the mask chunk mz

0, step 12
becomes

R1 = S0[(ãz0 �` m
z
0 �` z)⊕ (−z)]⊕m′0 .

Using (5), as ãz0 = az0 �` m
z
0 �` z, it holds that

R1 = S0[((az0 �` m
z
0 �` z)�` m

z
0 �` z)⊕ (−z)]⊕m′0

= S0[az0 ⊕ (−z)]⊕m′0
= S0[a0]⊕m′0 .

At step 11, we also have

B1 = carry(step 10)

=

{
1 if (az0 +mz

0 + z) > 2`

0 otherwise
.
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Algorithm 6 Secure multiple SBox with arithmetically masked input

Inputs: S = (S0, . . . , SN−1) ∈ (IF`2 → IF`2)N , ã = (a�m) ∈ IFn2 , m ∈ IFn2 , m′ ∈ IFn2
Output: b̃ = S[a]⊕m′ = (SN−1[aN−1]⊕m′N−1)‖ . . . ‖(S0[a0]⊕m′0)
1: function SecureMulSBox(S, ã,m,m′)
2: z ← Random({0, 1})
3: ãz ← ã⊕ (−z)
4: mz ← m⊕ (−z)
5: B1 ← z . B1 propagates the correct carries
6: for i = 0 to N − 1 do
7: c← B1

8: for k = 0 to 2` − 1 do

9: cmp← (k
?
= mz

i ) . if k and m are equal, cmp is 1, else 0
10: t← ãzi �` k �` c
11: Bcmp ← carry(step10) . save next carry
12: Rcmp ← Si[t⊕ (−z)]⊕m′i
13: end for
14: b̃i ← R1

15: end for
16: return b̃ = b̃N−1‖ . . . ‖b̃0
17: end function

This corresponds to the next carry masked by the bit z:

B1 = c1 ⊕ z .

For i > 0, assume that B1 contains the current masked carry at the beginning
of step 8. For each i, 0 < i < N , it holds then that

R1 = Si[(ã
z
i �` m

z
i �` c

z
i )⊕ (−z)]⊕m′i

= Si[((a
z
i �` m

z
i �` c

z
i )�` m

z
i �` c

z
i )⊕ (−z)]⊕m′i

= Si[a
z
i ⊕ (−z)]⊕m′i

= Si[ai]⊕m′i .

Consequently, we also obtain

B1 = czi+1 = ci+1 ⊕ z ,

which is the next masked carry. At the end of Alg. 6, b̃i = Si[ai] ⊕m′i for each
i, 0 6 i < N , which is the expected output.

4.2 Security Analysis

To achieve security against first order DPA, each step of our algorithm shall not
depend on any unmasked secret data. Before discussing the security in details,
we need to precisely define the attacker model.

Attacker: We assume that the attacker has full access to a device performing an
encryption using a block-cipher implementing Alg. 6 as a countermeasure in the
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same context as Fig. 2. The attacker can choose any input to the block-cipher,
and we assume that she is able to predict the value of the input a of Alg. 6 for
any hypothesis on the secret key(t). The attacker can only perform first-order
DPA, meaning that only one moment of the execution can be targeted at each
execution. But, the attacker is able to acquire as many power traces as needed
for the targeted moment.

Leakage: We assume that the device is leaking information on the values in-
volved during every operation. This information may be their Hamming weight.
Every operation is assumed to leak similarly.

Recall that a and S[a] are sensitive data. Algorithm 6 is secure against the
previously defined model only if each operation involved behaves as it was ma-
nipulating only random or constant values. No operation should involve both a
masked value and the corresponding mask at the same time. We analyze each
step of Alg. 6 involving a sensitive data in Table 1. Steps 2, 4, 5 and 9 are omit-
ted as they manipulate only constant or random value. The notation kz is used
to denote k ⊕ (−z).

Table 1. Sensitive values manipulated in Alg. 6

Step Instruction Manipulated value Sensitive value Mask(s)

3.1 t ← ã a�m a m
3.2 ãz ← t⊕ (−z) (a�m)⊕ (−z) a m, z

7 c ← B1 czi ci z

10.1 t ← ãzi (ai �` mi �` ci)⊕ (−z) ai �` ci mi, z
10.2 t ← t�` k �` c ai ⊕ (−z)�` mz

i �` k ai z, mz
i �` k

11 Bcmp ← carry(step10) czi+1 ci+1 z

12.1 t ← t⊕ (−z) ai �` mi �` kz ai mi �` kz

12.2 t ← Si[t] Si[ai �` mi �` kz] ai mi �` kz

12.3 Rcmp ← t⊕m′i Si[ai �` mi �` kz]⊕m′i ai mi �` kz, m′i

14 b̃i ← R1 Si[ai]⊕m′i Si[ai] m′i

We further detail the steps presented in Table 1:

– Step 3 manipulates a masked variable, and the operation only adds another
independent random bit.

– Steps 7 and 14 are assignments of masked data: B1 is the next carry masked
by z and R1 is Si[ai] masked by m′i.

– At steps 10 and 12, k is constant, then the masks mz
i �` k or mi �` kz are

uniformly distributed on ` bits. These steps are performed once for every
possible value of k. Next, the carry read at Step 11 is already masked by the
bit z and gives no information on the sensitive variable.
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According to Table 1, each sensitive value is masked with a uniformly dis-
tributed mask of at least as many bits as the sensitive value.

5 Implementation

We implemented our method (Alg. 6) as well as the method using the mask
conversion from [17], then the secure SBox algorithm of [19] (Alg. 4). The imple-
mentations were done in 8051 assembly with the same optimizations – favoring
small code size. The implemented example is N = 8 SBoxes of ` = 4 bits input
and output which are the parameters used in the GOST block-cipher. For Alg. 4,
we used λ ∈ {2, 4, 8} as chunk size for the AMtoBM conversion algorithm. In the
cases λ < 8, each element of precomputed tables T and C has been stored on
one byte. In the case λ = 8, we also used the optimization for Alg. 4 described
in Remark 2. We give in Table 5 a comparison between these methods regard-
ing several parameters. Our method has not been compared to methods based
on table re-computation because we targeted low memory devices. For these
parameters, such methods would require at least 64 extra bytes of memory.

Table 2. Comparison of 8051 implementations of Alg. 4 and Alg. 6

Alg. 4 ([17] + [19]) Alg. 6
λ = 2 λ = 4 λ = 8 (this paper)

rand. gen. (in bits) 3 5 9 1
pre-comp. time (in cy) 72 201 3349 ∅
algorithm time (in cy) 3013 2773 2633 3334

XRAM (in bytes) 4 16 256 0
Code (in bytes) 276 271 256 151

It can be noticed that our new algorithm outperforms the others in terms
of memory requirements (RAM and code). This makes it particularly suitable
on devices with limited resources. If only one call is needed, the execution time
of our algorithm is similar to the algorithms from [17] and [19] with λ = 2, a
bit slower with λ = 4, and better with λ = 8. Then, for the implementation
of a full block cipher, depending on the number of secure rounds needed, our
method may be less efficient than those using pre-computation, but still has the
advantage of using no extra memory. Furthermore, the random generation time
has not been taken into account in the provided timings. On a device where no
fast random is available, the cost of the additional random generation needed
by Alg. 4 may make it even slower.

6 Conclusion

We have introduced a new method that answers the problem of accessing so-
called multiple SBoxes with arithmetically masked input in the context of a
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software implementation secure against first order DPA. One advantage of the
proposed solution is that no extra RAM is needed to securely compute the output
of the SBoxes. Besides, the code size of the proposed method is relatively low,
and the execution speed remains competitive with other methods when only
few computations are needed. All in all, our method is particularly suitable for
extremely constrained devices with tight requirements on memory (RAM and
ROM). We have demonstrated the security of our method against first-order
DPA. An extension of our algorithm to second-order masking as in [21] is the
next step of this work.
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